Retention Time Locking: Concepts and Applications

Application

Gas Chromatography
December 1997

Authors
Vince Giarrocco
Bruce Quimby
Matthew Klee
Agilent Technologies, Inc.
2850 Centerville Road
Wilmington, DE 19808-1610
USA

Abstract

The concepts and applications of retention time locking (RTL) are described. RTL simplifies the process of transferring methods from chromatographic instrument to chromatographic instrument, column to column, and detector to detector. The analysis of impurities in styrene according to ASTM D 5135 is used to demonstrate the efficacy of the approach. Using RTL, the retention times matched within an average of 0.16% (0.02–0.03 minute) in constant pressure modes.

Key Words
Retention time locking, method validation, styrene analysis, ASTM D 5135, capillary gas chromatography, laboratory productivity

Introduction

Retention time is the fundamental qualitative measurement of chromatography. Most peak identification is performed by comparing the retention time of the unknown peak with that of a standard. It is much easier to identify peaks and validate methods if there is no variation in the retention time of each analyte.

However, shifts in retention time occur frequently. Routine maintenance procedures such as column trimming alter retention times. In a multi-instrument laboratory running duplicate methods, the retention times for each instrument will differ from each other, even when run under nominally identical conditions. These differences in retention times mean that each instrument must have a separate calibration and integration event table, making it time-consuming to transfer methods from one instrument to another. Differences in retention time also complicate comparison of data between instruments and over time.

Retention time locking (RTL) is the ability to very closely match chromatographic retention times in any Agilent 6890 gas chromatograph (GC) system to those in another 6890 GC system with the same nominal column.

There are several subtle effects that combine to cause retention time differences between similarly configured GC systems. Columns of the same part number can vary slightly in length, diameter, and film thickness.
GC pneumatics can have small variations in the actual inlet pressure applied at a given setpoint. The actual temperature of the GC oven also has minute but real deviations from the indicated value. The sum of these and other effects result in the observed retention time differences between similarly configured GC systems.

The pneumatics and oven temperature control of the 6890 GC have advanced the state of the art in GC hardware accuracy and precision. Agilent’s advances in fused silica capillary column technology have resulted in highly reproducible column-to-column retention characteristics. With these advances, retention time precision for a given peak in a single GC setup is usually better than 0.01 minute. However, even with these advances in columns and instrument hardware, the sum of the effects mentioned above can cause retention time differences between identically configured GC systems of as much as 0.4 minute.

It would be impractical to control all of the instrument and column variables to a degree where retention time differences between similarly configured GC systems are removed. There is, however, a means of greatly reducing these differences. By making an adjustment in the inlet pressure, the retention times on a given GC setup can be closely matched to those of a similarly configured GC system. RTL is based on this principle. The process of RTL is to determine what adjustment in inlet pressure is necessary to achieve the desired match in retention times. Agilent RTL software (G2080AA), which integrates into the Agilent GC ChemStation (version A.05.02 or later), provides the tool required to determine the correct inlet pressure quickly and simply.

There are several advantages gained by using RTL in the laboratory. Peak identification becomes easier and more reliable. It is easier to compare data both between instruments and over time. Comparison of data when using different detectors for analyte identification is simplified. Transferring methods from instrument to instrument or laboratory to laboratory is easier because calibration time windows normally will not require readjustment. Validation of system performance is easier. With “locked” GC methods, the development and use of retention time data bases for unknown identification is much more straightforward.

To maintain a locked method, RTL should be performed whenever:

- The column is changed or trimmed
- The method is installed on a new instrument
- A detector of different outlet pressure is used
- System performance is validated
- Troubleshooting chromatographic problems

To lock a given method for the first time or for the reasons below, one must first develop a retention time versus pressure (RT vs. P) calibration.

Even when using columns with the same part number (same id, stationary phase type, phase ratio, and same nominal length), separate/different locking calibration curves are needed when using:

- Systems with different column outlet pressures (FID/atmospheric, MSD/vacuum, AED/ elevated)
- Columns differing from the “nominal” length by more than 15% (e.g., due to trimming)
- Systems where the predicted locking pressure falls outside the range of the current calibration

A specific solute (usually one found in the normal method calibration standard) must be chosen and then used for both developing the locking calibration and locking all future systems. The solute, or target peak, should be easily identifiable, symmetrical, and should elute in the most critical part of the chromatogram. Solutes that are very polar or subject to degradation should be avoided.

Once the target solute has been chosen and all other chromatographic parameters of the method have been determined, five calibration runs are performed. The runs are made at conditions identical to the nominal method except that four of the runs are made at different pressures. The pressures used are typically:

- Target pressure – 20%
- Target pressure – 10%
- Target pressure (nominal method pressure)
- Target pressure + 10%
- Target pressure + 20%

The retention time of the target compound is determined for each run. The resulting five pairs of inlet pressures and corresponding retention times are entered into the ChemStation software to generate an RTL calibration file.

Figure 1 shows the dialog box used to enter the calibration data. After the data is entered, a plot is displayed, as shown in figure 2. The maximum departure of the fitted curve from the data is given for both time and pressure. If the fit is acceptable, the retention time versus pressure calibration is stored and becomes part of the GC
method. This calibration need only be generated once. Subsequent users of the method can use this calibration when running the method on a similar instrument setup, regardless of location.

To relock a system or lock a new one:

1. Set up the method conditions and run a standard containing the target compound.
2. Enter the actual retention time of the target compound into the “(Re)Lock current method” dialog box (see figure 3).
3. Update the 6890 method with the new calculated pressure, and save the method.
4. Validate the retention time lock by injecting the standard at the new pressure, and compare the retention time obtained to the desired retention time.
5. Repeat steps 2 to 4, if necessary.

A Note on Constant Flow versus Constant Pressure Modes of EPC Operation

Many GC chromatographers prefer to use the “constant flow mode” of EPC operation. In this mode, inlet pressure increases automatically to maintain constant outlet flow rate as the oven temperature increases during the run. Constant flow mode reduces run time and ensures that flow-sensitive detectors see a constant column effluent flow.

The “constant pressure” mode of EPC operation is also popular. In this mode, the pressure remains constant during the run (outlet flow will decrease as temperature increases). For those wishing to reduce run time in constant pressure mode, a higher pressure can be chosen. For
flow-sensitive detectors, one can set "constant column flow + makeup" via the 6890 keyboard or ChemStation. In this mode, the makeup flow is increased as the column flow decreases to keep the sum of the two constant.

The underlying theory of RTL predicts that constant pressure mode of EPC provides the closest matching of retention times. If one desires to compare data from systems with very different configurations, such as GC/FID to GC/MSD, it is best to use constant pressure mode. As can be seen from the styrene analysis data herein, retention time matching between systems of the same configuration (GC/FID, in this case) is still quite good in the constant flow mode.

This application note shows the use of RTL to lock retention times between multiple chromatographic instruments, columns, and detector types and demonstrates RTL in both constant flow and constant pressure modes.

Experimental

Two 6890 Series GC systems were used. Each system was equipped with:

- Electronic pneumatics control (EPC)
- Split/splitless inlet (250 °C, He carrier gas, split 80:1)
- Automatic liquid sampler
- GC ChemStation (version A.05.02)
- Flame ionization detector (FID)
- 60 m x 0.32 mm, 0.5 mm HP-INNOWax column (part no. 19091N-216)

- Temperature program: 80 °C (9 min), 5 °C/min to 150 °C

The inlet pressures/flows used are indicated with each chromatogram.

A third 6890 Series GC was also used. This system was equipped with an Agilent 5973 mass selective detector (MSD) and was used for peak identification. The GC-MSD chromatographic parameters used were the same as the GC systems noted above except for the inlet pressures as indicated.

Results and Discussion

GC-FID to GC-FID Locking

Figure 4 shows the original chromatogram (GC system 1) obtained from running a styrene sample under the conditions specified in ASTM D 5135.1 Many of the typical impurities found in styrene are found here. The phenylacetylene peak represents about 60 ppm. The peaks are identified in table 1.

The sample was then run at four other pressures to collect the five data pairs for RTL calibration. Because this method was run in constant flow mode, the pressures entered into the RTL software were the initial pressures. The α-methylstyrene peak (peak 10) was chosen as the target compound. The calibration data are shown in figure 1.

The method conditions and RTL calibration were then moved to GC system 2, a different GC and column. The sample was run at the original method inlet pressure of 18.2 psi. The chromatogram obtained using this scouting run is overlaid on the original chromatogram in figure 5. The retention times shifted about 0.3 minute on the second GC. This is a typical result obtained when trying to replicate an analysis on a second instrument or with a second column.

The retention time of α-methylstyrene was entered into the RTL software.

Figure 4. Styrene sample run on GC system 1 at 18.2 psi initial pressure, constant flow mode.
dialog box on GC system 2, as shown in figure 3. The RTL software indicated the initial pressure should be modified from 18.2 psi to 18.96 psi. The new initial pressure was entered into the method and saved.

Figure 6 compares the chromatograms obtained from the original run and after locking retention times using the α-methylstyrene. Table 2 compares the retention times before and after using this approach. The retention times are now closely matched.

GC-FID to GC-MSD Locking

A second experiment was conducted to lock the original method from GC system 1 to the GC-MSD. This is useful for identification of unknown impurities that show up in the FID chromatogram. For example, there is a shoulder evident on the front side of the phenylacetylene peak in figure 4. It would simplify locating the impurity in the GC-MSD data if the retention times closely matched that of the GC-FID.

Because constant pressure mode is preferred when comparing data from FID and MSD systems, constant pressure mode was chosen, and the styrene sample was re-run on GC system 1 at 18.2 psi for reference.

The next step was to determine the chromatographic conditions to be used on the GC-MSD. The Agilent method translation software tool was used to calculate the conditions necessary to have the peaks elute in the identical order on the two systems. Because the retention times need to match, the dead time and temperature program used for running the GC-MSD must be the same as the GC.
The pressure used, however, will be different due to the difference in column outlet pressure. The GC-MSD inlet pressure is calculated using the "none" mode of the method translation software (figure 7). In this mode, the holdup time between the two columns was forced to be identical to the GC-FID. This gives a speed gain of 1. The pressure calculated for use on the GC-MSD was 8.44 psi. Note that this calculated pressure is only the nominal pressure required to get similar retention times, not the exact locking pressure.

A different RTL calibration is required for GC-MSD because the outlet pressure is vacuum, and that of the FID is atmospheric pressure. Five runs were made on the GC-MSD system bracketing the 8.44 psi nominal method pressure. Because the GC-MSD used in this study was not equipped with RTL software, a dummy method was created in GC system 1 and the GC-MSD RTL calibration data was entered into it. A scouting run of the Styrene sample was made on the GC-MSD, and the α-methylstyrene retention time was used for locking. The locking inlet pressure calculated with the dummy method was 7.9 psi and was entered into the GC-MSD.

Figure 8 shows the resulting matched chromatograms from the GC-FID and GC-MSD. As seen in table 3, the retention times are now closely matched within 0.02 minute.

Figure 9 shows the MSD first choice of library search result of the impurity that created the shoulder on the front side of the Phenylacetylene peak. RTL ensured that this shoulder remained separated on the MSD system and eluted at the same time for easy comparison to the FID results.

Conclusions

Retention time locking facilitates replicating results from instrument to instrument, from column to column, and from detector to detector by locking retention times. The retention times of a styrene sample analyzed according to ASTM D5135 matched to within 0.06 minute after locking.
References

1. ASTM D 5135-95, “Analyses of Styrene by Capillary Gas Chromatography,” Annual Book of Standards, Volume 06.04, ASTM, 100 Bar Harbor Drive, West Conshohocken, PA 19428 USA.

Figure 8. Comparison of chromatogram on GC system 1 with GC-MSD system after retention time locking, Constant Pressure Mode

Table 3. GC-FID vs. GC-MSD, Method Translated then Locked—Retention Times (Constant Pressure Conditions)

<table>
<thead>
<tr>
<th>Component</th>
<th>GC-FID Original</th>
<th>GC-MSD</th>
<th>RT Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>18.2 psi</td>
<td>7.9 psi</td>
<td>min</td>
</tr>
<tr>
<td>Ethylbenzene</td>
<td>10.315</td>
<td>10.338</td>
<td>0.023</td>
</tr>
<tr>
<td>p-Xylene</td>
<td>10.620</td>
<td>10.642</td>
<td>0.022</td>
</tr>
<tr>
<td>m-Xylene</td>
<td>10.869</td>
<td>10.890</td>
<td>0.021</td>
</tr>
<tr>
<td>i-Propylbenzene</td>
<td>12.038</td>
<td>12.053</td>
<td>0.015</td>
</tr>
<tr>
<td>o-Xylene</td>
<td>12.613</td>
<td>12.630</td>
<td>0.017</td>
</tr>
<tr>
<td>n-Propylbenzene</td>
<td>13.492</td>
<td>13.508</td>
<td>0.016</td>
</tr>
<tr>
<td>a-Methylstyrene*</td>
<td>18.278</td>
<td>18.267</td>
<td>-0.009</td>
</tr>
<tr>
<td>Phenylacetylene</td>
<td>19.406</td>
<td>19.389</td>
<td>-0.017</td>
</tr>
<tr>
<td>a-Methylstyrene</td>
<td>21.008</td>
<td>20.987</td>
<td>-0.011</td>
</tr>
<tr>
<td>Benzaldehyde</td>
<td>25.475</td>
<td>25.415</td>
<td>-0.060</td>
</tr>
</tbody>
</table>

* Used in locking calculation

Average 0.021

Figure 9. GC-MSD identification of impurity in shoulder of phenylacetylene peak